Linear Groups Containing a Singer Cycle*

WILLIAM M. KANTOR

Department of Mathematics, University of Oregon, Eugene, Oregon 97403

Communicated by Marshall Hall, Jr.

Received January 16, 1979

A Singer cycle of GL(n, q) is an element of order $q^n - 1$. In this note the following result will be proved:

THEOREM. If G is a subgroup of GL(n, q) containing a Singer cycle, then $G \supseteq GL(n/s, q^s)$ for some s, embedded naturally in GL(n, q).

If G induces a primitive permutation group on the set X of points (1-spaces) of the underlying vector space V, then well-known results of Burnside [1, p. 341] and Schur [6] imply that G acts on X 2-transitively or as a regular or Frobenius group of prime degree; the theorem then follows from [2; 5]. We must thus take a nontrivial block of imprimitivity Δ for G on X, and analyze the action of G on Δ^G . It should be noted that the proof is elementary in the same sense as in [2]: no purely group theoretic classification theorems are required.

Proof. We will employ induction on n. If n = 2, use of Dickson [4, Ch. 12] readily yields the result, so suppose that $n \ge 3$.

We may assume that G is imprimitive on X. Choose Δ as above with $|\Delta|$ minimal, and let K denote the kernel of the action of G on Δ^G . Let A < G be generated by a Singer cycle, and set $B = K \cap A$. Then B^{Δ} is transitive, and B contains the group S of scalar transformations of V.

Clearly, $\operatorname{Hom}_{\mathcal{A}}(V, V) = A \cup \{0\} \cong GF(q^n)$. The additive subgroup $\langle B \rangle$ of $\operatorname{Hom}_{\mathcal{A}}(V, V)$ is closed under addition and multiplication, contains S, and hence is $GF(q^s)$ for some $s \mid n$. If $\delta \in \mathcal{A}$, then $\delta^{\langle B \rangle}$ consists of 0 and the set of points in the subspace $\langle \mathcal{A} \rangle$ of V spanned by \mathcal{A} .

Suppose first that $\langle \Delta \rangle \neq V$, so s < n. Note that $\langle \Delta \rangle^G = \langle \Delta \rangle^A$ (since for each $g \in G$ there is an $a \in A$ such that $\langle \Delta \rangle^g = \langle \Delta^g \rangle = \langle \Delta^a \rangle = \langle \Delta \rangle^a$). But $\langle \Delta \rangle - \{0\}$ is an orbit of $\langle B \rangle - \{0\}$. Thus, $\langle \Delta \rangle^G$ can be identified with the set of points of $PG(n/s - 1, q^s)$. Since G permutes these points, if n > 2s

^{*} This research was supported in part by the Science Research Council and the National Science Foundation.

then $G \leq \Gamma L(n/s, q^s)$ by the Fundamental Theorem of Projective Geometry, and we may apply induction as s > 1. Suppose that n = 2s, and let \mathcal{C} consist of the vectors in V and the set of all cosets of members of $\langle \Delta \rangle^G$. Then \mathcal{C} is the affine plane $AG(2, q^s)$, whose collineation group is $V \cdot \Gamma L(2, q^s)$ (cf. Dembowski [3, pp. 31–32, 131–132]). Thus, $G \leq \Gamma L(n/s, q^s)$ once again.

We may thus assume that $\langle \Delta \rangle = V$ and $\langle B \rangle = \operatorname{Hom}_A(V, V)$. Now $N_{\Gamma L(n,q)}(B)$ acts on $\operatorname{Hom}_A(V, V)$, and hence is $\Gamma L(1, q^n)$. We may thus also assume that B is not normal in G.

After these reductions, we will aim for a contradiction. Clearly, $G_{\Delta}^{\ d}$ is primitive, and $G_{\Delta}^{\ d} \geq K^{\ d} \geqslant B^{\ d}$ with $B^{\ d}$ cyclic and transitive. Note that $K^{\ d}$ is also primitive. (For, each complete system of blocks of imprimitivity for $K^{\ d}$ consists of all orbits of a subgroup of the cyclic group $B^{\ d}$. Since $G_{\Delta}^{\ d}$ permutes these systems, it must fix each system, and hence each system for $K^{\ d}$ is also one for $G_{\Delta}^{\ d}$.)

The theorems of Burnside and Schur cited above thus leave us with two cases to consider: (i) K^{Δ} is 2-transitive, and (ii) $B^{\Delta} \leq G_{\Delta}^{\Delta}$.

(i) Let L be a line of PG(n, q) such that $| \Delta \cap L | = l \geqslant 2$. Then l is independent of the choice of both Δ in Δ^G and of L. Clearly, l < q + 1, as otherwise Δ would be a subspace. Let $x \in \Delta \cap L$ and $y \in L - \Delta$, where $y \in \Delta' \in \Delta^G$. Then $y^{K_x} \subseteq \Delta'$ and $|\bigcup \{L^k \cap \Delta' \mid k \in K_x\}|$ is either $(\delta - 1)/(l - 1)$ or $l \cdot (\delta - 1)/(l - 1)$, where $\delta = |\Delta| > l$ (since $V = \langle \Delta \rangle$ has dimension $n \geqslant 3$). But $l(\delta - 1)/(l - 1) > \delta$, so we must have $|L \cap \Delta'| = 1$.

Now K_L fixes $L-\Delta$ pointwise, while $K_L^{\Delta\cap L}$ is 2-transitive and $K_L^L \leq PGL(2,q)$. Consequently, l=q except perhaps if l=2 and q=3.

Suppose that l=q. Let E be a plane containing three noncollinear points of Δ . If a line contains two points of $\Delta \cap E$ then it contains exactly q points of $\Delta \cap E$ and 1 of $\Delta' \cap E$. Thus, if q>2 then $\Delta \cap E$ is an affine plane with line at infinity $\Delta' \cap E$. (A line of E containing two points of $E-\Delta$ can contain at most one point of $\Delta \cap E$.) If q=2 then $\Delta \cap E$ may be a triangle $\{x_1, x_2, x_3\}$, and the third points on $\langle x_1, x_2 \rangle$, $\langle x_2, x_3 \rangle$ and $\langle x_3, x_1 \rangle$ are collinear. In either case, $\Delta' \cap E$ contains a line, which is impossible.

This leaves the possibility l=2 and q=3. Here, $|y^{K_x}|=\delta-1$, so K_x fixes a unique point $x'\in \Delta'$. Clearly, L meets a third member $\Delta''\neq \Delta$, Δ' of Δ^G , and K_x also fixes some $x''\in \Delta''$. Then $K_x=K_{x'}=K_{x''}$. However, there are $\frac{1}{2}\delta(\delta-1)/\delta$ lines on x' meeting Δ twice, and these yield a $K_{x'}$ -invariant set of $\frac{1}{2}(\delta-1)$ points of Δ'' . Thus, $\frac{1}{2}(\delta-1)$ is $\delta-1$ or 1. Now $\delta=3$, so $n\leqslant 3$ and $G\leqslant GL(3,3)$. But here |X|=13 contradicts the imprimitivity of G.

(ii) Since B is not normal in G, the pointwise stabilizer $K(\Delta)$ of Δ in K must contain S properly. Since $\langle \Delta \rangle = V$ the group $K(\Delta)$ must be diagonalizable. Now all point-orbits of the monomial group $K(\Delta)B$ have length δ , which is ridiculous.

This contradiction completes the proof of the theorem.

Remark. It would be desirable to have an equally elementary determination of all subgroups of GL(n, q) containing $A \cap SL(n, q)$.

REFERENCES

- W. Burnside, "Theory of Groups of Finite Order," 2nd ed. Cambridge Univ. Press, London 1911; reprinted Dover, New York, 1955.
- 2. P. J. CAMERON AND W. M. KANTOR, 2-transitive and antiflag transitive collineation groups of finite projective spaces, J. Algebra 60 (1979), 384-422.
- P. Dembowski, "Finite Geometries," Springer-Verlag, Berlin/Heidelberg/New York, 1968.
- L. E. DICKSON, "Linear Groups," Teubner, Leipzig, 1901; reprinted Dover, New York, 1958.
- 5. A. ORCHEL, unpublished manuscript.
- I. Schur, Zur Theorie der einfach transitiven Permutationsgruppen, S. B. Preuss. Akad. Wiss. Phys.-Math. Kl. 1933 (1933), 598-623.